Solved

Let R Be the Region in the First Quadrant Bounded x2+y2=1x ^ { 2 } + y ^ { 2 } = 1

Question 13

Essay

Let R be the region in the first quadrant bounded between the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the two axes.Then R(x2+y2)dA=π8\int _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A = \frac { \pi } { 8 } Let Rˉ\bar { R } be the region in the first quadrant bounded between the ellipse 25x2+9y2=125 x ^ { 2 } + 9 y ^ { 2 } = 1 and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral x(75x2+27y2)dA\int _ { x } \left( 75 x ^ { 2 } + 27 y ^ { 2 } \right) d A

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions