Solved

The Joint Density Function for X, Y Is Given By p

Question 53

Multiple Choice

The joint density function for x, y is given by p(x,y) ={1150ex/10ey/15x0,y00 otherwise p ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } & x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. Write down an iterated integral to compute the probability that x + y \le 10.You do not need to do the integral.


A) 0100101150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d ^ { } y d x
B) 010010x1150ex/10ey/15dxdy\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
C) 010010x1150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d y d x
D) 010010x110ex/10ey/15dyd2x\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 10 } e ^ { - x / 10 } e ^ { - y / 15 } d y d ^ { 2 } x
E) 010x0101150ex/10ey/15dxdy\int _ { 0 } ^ { 10 - x } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions