Solved

Let v=3i+aj+bk\vec { v } = 3 \vec { i } + a \vec { j } + b \vec { k }

Question 40

Essay

Let v=3i+aj+bk\vec { v } = 3 \vec { i } + a \vec { j } + b \vec { k } be a vector in space with a, b > 0.
Compute the cross product v×(3j+k)\vec { v } \times ( 3 \vec { j } + \vec { k } ) and then use the result and the Lagrange Multiplier method to find the values of a and b such that the magnitude of the cross product v×(3j+k)\| \vec { v } \times ( 3 \vec { j } + \vec { k } ) \| is the largest with v=19.\| \vec { v } \| = 19 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions