Solved

Using the Fact That y2(x2)(x2)2+y2(x2)2+y2\left| \frac { y ^ { 2 } ( x - 2 ) } { ( x - 2 ) ^ { 2 } + y ^ { 2 } } \right| \leq \sqrt { ( x - 2 ) ^ { 2 } + y ^ { 2 } }

Question 14

Essay

Using the fact that y2(x2)(x2)2+y2(x2)2+y2\left| \frac { y ^ { 2 } ( x - 2 ) } { ( x - 2 ) ^ { 2 } + y ^ { 2 } } \right| \leq \sqrt { ( x - 2 ) ^ { 2 } + y ^ { 2 } } for all x and y except (x,y)=(2,0)( x , y ) = ( 2,0 ) ,
show that lim(x,y)(2ρ)y2(x2)(x2)2+y2=0\lim _ { ( x , y ) \rightarrow ( 2 \rho ) } \frac { y ^ { 2 } ( x - 2 ) } { ( x - 2 ) ^ { 2 } + y ^ { 2 } } = 0 .

Correct Answer:

verifed

Verified

We note that blured image is equal to the distance f...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions