Solved

Find the Solution to the Differential Equation dydx=xsecy\frac { d y } { d x } = x \sec y

Question 72

Multiple Choice

Find the solution to the differential equation dydx=xsecy\frac { d y } { d x } = x \sec y if y=π6y = \frac { \pi } { 6 } when x = 1.


A) 2y=arccos(x22) 2 y = \arccos \left( \frac { x ^ { 2 } } { 2 } \right)
B) 32y=arctan(x) \frac { 3 } { 2 } y = \arctan ( x )
C) yπ6=arccos(x) y - \frac { \pi } { 6 } = \arccos ( x )
D) y=arcsin(x22) y = \arcsin \left( \frac { x ^ { 2 } } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions