Solved

For What Values of P Does the Series 1+9p+(9p)2+(9p)3++(9p)n+1+9 p+(9 p)^{2}+(9 p)^{3}+\ldots+(9 p)^{n}+

Question 31

Multiple Choice

For what values of p does the series 1+9p+(9p) 2+(9p) 3++(9p) n+1+9 p+(9 p) ^{2}+(9 p) ^{3}+\ldots+(9 p) ^{n}+ converge, if any?


A) 19\frac{-1}{9}<<p<p<19\frac{1}{9}
B) 118\frac{-1}{18} <<p<p<118\frac{1}{18}
C) -1 < p < 1
D) 1p1-1 \leq p \leq 1
E) The series diverges for all values of p.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions