Solved

Set Up a Riemann Sum Approximating the Volume of the Torus

Question 75

Multiple Choice

Set up a Riemann sum approximating the volume of the torus (donut) obtained by rotating the circle (x6) 2+y2=1(x-6) ^{2}+y^{2}=1 about the y-axis.


A) π(6+1y2) 2Δy\sum \pi\left(6+\sqrt{1-y^{2}}\right) ^{2} \Delta y
B) π(61y2) 2Δy\sum \pi\left(6-\sqrt{1-y^{2}}\right) ^{2} \Delta y
C) π((6+1y2) 2+(61y2) 2) Δy\sum \pi\left(\left(6+\sqrt{1-y^{2}}\right) ^{2}+\left(6-\sqrt{1-y^{2}}\right) ^{2}\right) \Delta y
D) π((6+1y2) 2(61y2) 2) Δy\sum \pi\left(\left(6+\sqrt{1-y^{2}}\right) ^{2}-\left(6-\sqrt{1-y^{2}}\right) ^{2}\right) \Delta y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions