Solved

Set Up an Integral Representing the Volume of the Torus (x6)2+y2=1(x-6)^{2}+y^{2}=1

Question 12

Multiple Choice

Set up an integral representing the volume of the torus (donut) obtained by rotating the circle (x6) 2+y2=1(x-6) ^{2}+y^{2}=1 about the y-axis.


A) 11π(6+1y2) 2dy\int_{-1}^{1} \pi\left(6+\sqrt{1-y^{2}}\right) ^{2} d y
B) 11π(61y2) 2dy\int_{-1}^{1} \pi\left(6-\sqrt{1-y^{2}}\right) ^{2} d y
C) 11π((6+1y2) 2+(61y2) 2) dy\int_{-1}^{1} \pi\left(\left(6+\sqrt{1-y^{2}}\right) ^{2}+\left(6-\sqrt{1-y^{2}}\right) ^{2}\right) d y
D) 11π((6+1y2) 2(61y2) 2) dy\int_{-1}^{1} \pi\left(\left(6+\sqrt{1-y^{2}}\right) ^{2}-\left(6-\sqrt{1-y^{2}}\right) ^{2}\right) d y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions