Solved

In a Hydrogen Atom in the Unexcited State, the Probability F(x)=4(a0)30xr2e2ra0drF(x)=\frac{4}{\left(a_{0}\right)^{3}} \int_{0}^{x} r^{2} e^{\frac{-2 r}{a_{0}}} d r

Question 103

Multiple Choice

In a hydrogen atom in the unexcited state, the probability of finding the sole electron within x meters of the nucleus is given by F(x) =4(a0) 30xr2e2ra0drF(x) =\frac{4}{\left(a_{0}\right) ^{3}} \int_{0}^{x} r^{2} e^{\frac{-2 r}{a_{0}}} d r , for x0x \geq 0 , where a0=5.29×1011a_{0}=5.29 \times 10^{-11} meters.What is its corresponding probability density function f(x) ?


A) f(x) =4(a0) 32x2a0e2xa0f(x) =\frac{4}{\left(a_{0}\right) ^{3}} \cdot 2 x \cdot \frac{-2}{a_{0}} e^{\frac{-2 x}{a_{0}}}
B) f(x) =4(α0) 3(2a0x2e2xa0+2xe2xa0) f(x) =\frac{4}{\left(\alpha_{0}\right) ^{3}} \cdot\left(\frac{-2}{a_{0}} x^{2} e^{\frac{-2 x}{a_{0}}}+2 x e^{\frac{-2 x}{a_{0}}}\right)
C) f(x) =4(a0) 3x2e2xa0f(x) =\frac{4}{\left(a_{0}\right) ^{3}} x^{2} e^{\frac{-2 x}{a_{0}}}
D) f(x) =12(a0) 4x2e2xa0f(x) =-\frac{12}{\left(a_{0}\right) ^{4}} x^{2} e^{\frac{-2 x}{a_{0}}}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions