Solved

For f(x)=xsin(4x)f(x)=x \sin (4 x) , Find a Function F(x)F(x) Such That F(x)=f(x)F^{\prime}(x)=f(x)

Question 52

Multiple Choice

For f(x) =xsin(4x) f(x) =x \sin (4 x) , find a function F(x) F(x) such that F(x) =f(x) F^{\prime}(x) =f(x) and F(0) =0F(0) =0 .


A) 14xcos(4x) 14sin(4x) \frac{1}{4} x \cos (4 x) -\frac{1}{4} \sin (4 x)
B) 14xcos(4x) +14sin(4x) -\frac{1}{4} x \cos (4 x) +\frac{1}{4} \sin (4 x)
C) 14xcos(4x) 116sin(4x) \frac{1}{4} x \cos (4 x) -\frac{1}{16} \sin (4 x)
D) 14xcos(4x) +116sin(4x) -\frac{1}{4} x \cos (4 x) +\frac{1}{16} \sin (4 x)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions