menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus Single and Multivariable
  4. Exam
    Exam 7: Integration
  5. Question
    \(\int x^{2}(2 x-2) d x=\frac{x^{4}}{2}-\frac{2 x^{3}}{3}+C\)
Solved

∫x2(2x−2)dx=x42−2x33+C\int x^{2}(2 x-2) d x=\frac{x^{4}}{2}-\frac{2 x^{3}}{3}+C∫x2(2x−2)dx=2x4​−32x3​+C

Question 11

Question 11

True/False

∫x2(2x−2)dx=x42−2x33+C\int x^{2}(2 x-2) d x=\frac{x^{4}}{2}-\frac{2 x^{3}}{3}+C∫x2(2x−2)dx=2x4​−32x3​+C .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q6: Find the value of A if

Q7: Derive the formula for the area of

Q8: Calculate <span class="ql-formula" data-value="\int \sec

Q9: Find <span class="ql-formula" data-value="\int(\ln x)^{2}

Q10: <span class="ql-formula" data-value="\int \sin ^{4} x \cos

Q12: <span class="ql-formula" data-value="\int 7 x \ln x

Q13: Use the Fundamental Theorem to evaluate

Q14: <span class="ql-formula" data-value="\int \frac{e^{x}}{1+e^{2 x}} d x=\frac{1}{2}

Q15: Evaluate exactly: <span class="ql-formula" data-value="\int_{x

Q16: Evaluate <span class="ql-formula" data-value="\int_{0}^{1 /

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines