menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus Single and Multivariable
  4. Exam
    Exam 7: Integration
  5. Question
    \(\int \sqrt{1-5 x} d x=-\frac{2}{15}(1-5 x)^{\frac{3}{2}}+C\)
Solved

∫1−5xdx=−215(1−5x)32+C\int \sqrt{1-5 x} d x=-\frac{2}{15}(1-5 x)^{\frac{3}{2}}+C∫1−5x​dx=−152​(1−5x)23​+C

Question 88

Question 88

True/False

∫1−5xdx=−215(1−5x)32+C\int \sqrt{1-5 x} d x=-\frac{2}{15}(1-5 x)^{\frac{3}{2}}+C∫1−5x​dx=−152​(1−5x)23​+C .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q83: Does <span class="ql-formula" data-value="\int_{1}^{\infty} \frac{1}{x^{\sqrt{p}}}

Q84: If the average value of f(x)on

Q85: If <span class="ql-formula" data-value="\int_{0}^{\infty} \frac{1}{e^{9

Q86: Find the area of the region

Q87: Suppose <span class="ql-formula" data-value="\int_{0}^{2} f(t)=a"><span

Q90: If <span class="ql-formula" data-value="\int_{5}^{7} \frac{1}{(x-6)^{2}}

Q91: Find <span class="ql-formula" data-value="\int e^{-t

Q92: Compute <span class="ql-formula" data-value="\int_{2}^{4}(1+\ln x)^{-1}

Q93: <span class="ql-formula" data-value="\int x e^{4 x} d

Q126: ...

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines