Solved

Suppose abg(x)dx=7\int_{a}^{b} g(x) d x=7 ab(g(x))2dx=8\int_{a}^{b}(g(x))^{2} d x=8 abh(x)dx=1\int_{a}^{b} h(x) d x=1

Question 13

Short Answer

Suppose abg(x)dx=7\int_{a}^{b} g(x) d x=7 , ab(g(x))2dx=8\int_{a}^{b}(g(x))^{2} d x=8 , abh(x)dx=1\int_{a}^{b} h(x) d x=1 , and ab(h(x))2dx=4\int_{a}^{b}(h(x))^{2} d x=4 .Find abg(x)dx(ab(2h(x))dx)2\int_{a}^{b} g(x) d x-\left(\int_{a}^{b}(2 h(x)) d x\right)^{2} .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions