Solved

SCENARIO 10-3
a Real Estate Company Is Interested in Testing

Question 3

Multiple Choice

SCENARIO 10-3
A real estate company is interested in testing whether the mean time that families in Gotham have been living in their current homes is less than families in Metropolis.Assume that the two population variances are equal.A random sample of 100 families from Gotham and a random sample of 150 families in Metropolis yield the following data on length of residence in current homes.
 SCENARIO 10-3 A real estate company is interested in testing whether the mean time that families in Gotham have been living in their current homes is less than families in Metropolis.Assume that the two population variances are equal.A random sample of 100 families from Gotham and a random sample of 150 families in Metropolis yield the following data on length of residence in current homes.    Gotham:   \bar { X } _ { \mathrm { G } } = 35 \text { months, } \quad S _ { \mathrm { G } } { } ^ { 2 } = 900 \quad \text { Metropolis: } \quad \bar { X } _ { \mathrm { M } } = 50 \text { months, } \mathrm { S } _ { \mathrm { M } } { } ^ { 2 } = 1050    -Referring to Scenario 10-3, which of the following represents the relevant hypotheses tested by the real estate company?   A)  H _ { 0 } : \mu _ { G } - \mu _ { M } \geq 0 \text { versus } H _ { 1 } : \mu _ { G } - \mu _ { M } < 0   B)  H _ { 0 } : \mu _ { G } - \mu _ { M } \leq 0 \text { versus } H _ { 1 } : \mu _ { G } - \mu _ { M } > 0   C)  H _ { 0 } : \mu _ { g } - \mu _ { M } = 0 \text { versus } H _ { 1 } : \mu _ { q } - \mu _ { M } \neq 0   D)  H _ { 0 } : \bar { X } _ { G } - \bar { X } _ { M } \geq 0 \text { versus } H _ { 1 } : \bar { X } _ { G } - \bar { X } _ { M } < 0   Gotham:
XˉG=35 months, SG2=900 Metropolis: XˉM=50 months, SM2=1050\bar { X } _ { \mathrm { G } } = 35 \text { months, } \quad S _ { \mathrm { G } } { } ^ { 2 } = 900 \quad \text { Metropolis: } \quad \bar { X } _ { \mathrm { M } } = 50 \text { months, } \mathrm { S } _ { \mathrm { M } } { } ^ { 2 } = 1050  SCENARIO 10-3 A real estate company is interested in testing whether the mean time that families in Gotham have been living in their current homes is less than families in Metropolis.Assume that the two population variances are equal.A random sample of 100 families from Gotham and a random sample of 150 families in Metropolis yield the following data on length of residence in current homes.    Gotham:   \bar { X } _ { \mathrm { G } } = 35 \text { months, } \quad S _ { \mathrm { G } } { } ^ { 2 } = 900 \quad \text { Metropolis: } \quad \bar { X } _ { \mathrm { M } } = 50 \text { months, } \mathrm { S } _ { \mathrm { M } } { } ^ { 2 } = 1050    -Referring to Scenario 10-3, which of the following represents the relevant hypotheses tested by the real estate company?   A)  H _ { 0 } : \mu _ { G } - \mu _ { M } \geq 0 \text { versus } H _ { 1 } : \mu _ { G } - \mu _ { M } < 0   B)  H _ { 0 } : \mu _ { G } - \mu _ { M } \leq 0 \text { versus } H _ { 1 } : \mu _ { G } - \mu _ { M } > 0   C)  H _ { 0 } : \mu _ { g } - \mu _ { M } = 0 \text { versus } H _ { 1 } : \mu _ { q } - \mu _ { M } \neq 0   D)  H _ { 0 } : \bar { X } _ { G } - \bar { X } _ { M } \geq 0 \text { versus } H _ { 1 } : \bar { X } _ { G } - \bar { X } _ { M } < 0
-Referring to Scenario 10-3, which of the following represents the relevant hypotheses tested by the real estate company?


A) H0:μGμM0 versus H1:μGμM<0H _ { 0 } : \mu _ { G } - \mu _ { M } \geq 0 \text { versus } H _ { 1 } : \mu _ { G } - \mu _ { M } < 0
B) H0:μGμM0 versus H1:μGμM>0H _ { 0 } : \mu _ { G } - \mu _ { M } \leq 0 \text { versus } H _ { 1 } : \mu _ { G } - \mu _ { M } > 0
C) H0:μgμM=0 versus H1:μqμM0H _ { 0 } : \mu _ { g } - \mu _ { M } = 0 \text { versus } H _ { 1 } : \mu _ { q } - \mu _ { M } \neq 0
D) H0:XˉGXˉM0 versus H1:XˉGXˉM<0H _ { 0 } : \bar { X } _ { G } - \bar { X } _ { M } \geq 0 \text { versus } H _ { 1 } : \bar { X } _ { G } - \bar { X } _ { M } < 0

Correct Answer:

verifed

Verified

Related Questions