Solved

SCENARIO 13-11
a Weight-Loss Clinic Wants to Use Regression Analysis Y=β0+β1X1+β2X2+β3X1X2+εY = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 1 } X _ { 2 } + \varepsilon

Question 10

Multiple Choice

SCENARIO 13-11
A weight-loss clinic wants to use regression analysis to build a model for weight loss of a client (measured in pounds) .Two variables thought to affect weight loss are client's length of time on the weight-loss program and time of session.These variables are described below:
Y = Weight loss (in pounds)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session, 0 if not
Data for 25 clients on a weight-loss program at the clinic were collected and used to fit the interaction
model: Y=β0+β1X1+β2X2+β3X1X2+εY = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 1 } X _ { 2 } + \varepsilon Output from Microsoft Excel follows:  Regression Statistics  Multiple R 0.7308 R Square 0.5341 Adjusted R Square 0.4675 Standard Error 43.3275 Observations 25\begin{array}{lr}{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7308 \\\text { R Square } & 0.5341 \\\text { Adjusted R Square } & 0.4675 \\\text { Standard Error } & 43.3275 \\\text { Observations } & 25\\\hline\end{array}

 ANOVA \text { ANOVA }
 df  SS MSF Significance F Regression 345194.066115064.68878.02480.0009 Residual 2139422.65421877.2692 Total 2484616.7203\begin{array}{lrrrrr}\hline&\text { df } & \text { SS }&M S &F & \text { Significance } F\\\hline\text { Regression } & 3 & 45194.0661 & 15064.6887 & 8.0248 & 0.0009 \\\text { Residual } & 21 & 39422.6542 & 1877.2692 & & \\\text { Total } & 24 & 84616.7203 & &\\\hline \end{array}


 Coefficients  Standard Error  t Stat  P-value  Lower 99%  Upper 99%  Intercept 20.729822.37100.92660.364684.070242.6106 Length 7.24721.49924.83400.00013.002411.4919 Morn 90.198140.23362.24190.035923.7176204.1138 Length x Morn 5.10243.35111.52260.142814.59054.3857\begin{array}{lrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 99\% } & \text { Upper 99\% } \\\hline \text { Intercept } & -20.7298 & 22.3710 & -0.9266 & 0.3646 & -84.0702 & 42.6106 \\\text { Length } & 7.2472 & 1.4992 & 4.8340 & 0.0001 & 3.0024 & 11.4919 \\\text { Morn } & 90.1981 & 40.2336 & 2.2419 & 0.0359 & -23.7176 & 204.1138 \\\text { Length x Morn } & -5.1024 & 3.3511 & -1.5226 & 0.1428 & -14.5905 & 4.3857 \\\hline\end{array}

-Referring to SCENARIO 13-11, which of the following statements is supported by the analysis shown?


A) There is sufficient evidence (at α\alpha = 0.05) of curvature in the relationship between weight loss (Y) and months on program(X1) .
B) There is sufficient evidence (at α\alpha = 0.05) to indicate that the relationship between weight loss (Y) and months on program (X1) varies with session time.
C) There is insufficient evidence (at α\alpha = 0.05) of curvature in the relationship between weight loss (Y) and months on program(X1) .
D) There is insufficient evidence (at α\alpha = 0.05) to indicate that the relationship between weight loss (Y) and months on program(X1) varies with session time.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions