Solved

Solve
-A Wind Turbine Generator Produces P Kilowatts of Power P=2.6w2\mathrm { P } = 2.6 \mathrm { w } ^ { 2 }

Question 4

Multiple Choice

Solve
-A wind turbine generator produces P kilowatts of power for wind speed w (measured in miles per hour) according to the equation P=2.6w2\mathrm { P } = 2.6 \mathrm { w } ^ { 2 } . Thus, the number of kilowatt hours P\mathrm { P } as a function of w\mathrm { w } is P(w) =2.6w2\mathrm { P } ( \mathrm { w } ) = 2.6 \mathrm { w } ^ { 2 } . At a particular time the wind speed is measured to be 20 miles per hour. However, the measuring device is known to have an inherent error of measure, e. Find an expression for the actual amount of energy produced by finding P(20+e) \mathrm { P } ( 20 + \mathrm { e } ) .


A) P(20+e) =2.6e2+20\mathrm { P } ( 20 + \mathrm { e } ) = 2.6 \mathrm { e } ^ { 2 } + 20
B) P(20+e) =2.6e2+1040\mathrm { P } ( 20 + \mathrm { e } ) = 2.6 \mathrm { e } ^ { 2 } + 1040
C) P(20+e) =26e2+104e+1040\mathrm { P } ( 20 + \mathrm { e } ) = 2 \cdot 6 \mathrm { e } ^ { 2 } + 104 \mathrm { e } + 1040
D) P(20+e) =e+1040\mathrm { P } ( 20 + \mathrm { e } ) = \mathrm { e } + 1040

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions