Solved

Indicate Whether the Function Is One-To-One S(r)=4πr2S ( r ) = 4 \pi r ^ { 2 }

Question 65

Multiple Choice

Indicate whether the function is one-to-one.
-The surface area of a balloon is given by S(r) =4πr2S ( r ) = 4 \pi r ^ { 2 } , where rr is the radius of the balloon. If the radius is increasing with time tt , as the balloon is being blown up, according to the formula r(t) =45t3,t0r ( t ) = \frac { 4 } { 5 } t ^ { 3 } , t \geq 0 , find the surface area SS as a function of the time tt .


A) S(r(t) ) =6425πt9S ( r ( t ) ) = \frac { 64 } { 25 } \pi t ^ { 9 }
B) S(r(t) ) =1625πt6S ( r ( t ) ) = \frac { 16 } { 25 } \pi t ^ { 6 }
C) S(r(t) ) =6425πt6\mathrm { S } ( \mathrm { r } ( \mathrm { t } ) ) = \frac { 64 } { 25 } \pi \mathrm { t } ^ { 6 }
D) S(r(t) ) =6425πt3\mathrm { S } ( \mathrm { r } ( \mathrm { t } ) ) = \frac { 64 } { 25 } \pi \mathrm { t } ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions