Solved

Solve the Problem 2×52 \times 5 Matrix Game Can Be Found as Follows: Obtain 5 Linear

Question 41

Multiple Choice

Solve the problem.
-The optimal strategy for a 2×52 \times 5 matrix game can be found as follows: obtain 5 linear functions by finding the inner product of x(t) =[1tt]x ( t ) = \left[ \begin{array} { c } 1 - t \\ t \end{array} \right] with each of the columns of the payoff matrix A. Graph the 5 linear functions on a t-z coordinate system. Then v(x(t) ) v ( x ( t ) ) is the minimum value of the 5 linear functions which will be seen on the graph as a polygonal path. The z-coordinate of any point on this path is the minimum of the corresponding zz coordinates of points on the 5 lines. The highest point on the path v(x(t) ) v ( x ( t ) ) is M. Suppose that only the lines corresponding to columns 1 and 4 of matrix AA pass through the point M\mathrm { M } . What can be said about the optimal column strategy y^\hat { y } ?


A) y^=[1200120]\hat { y } = \left[ \begin{array} { l } \frac { 1 } { 2 } \\ 0 \\ 0 \\ \frac { 1 } { 2 } \\ 0 \end{array} \right]
B) y^=[0c2c30c5]\hat { y } = \left[ \begin{array} { l } 0 \\ c _ { 2 } \\ c _ { 3 } \\ 0 \\ c _ { 5 } \end{array} \right] where c2+c3+c5=1c _ { 2 } + c _ { 3 } + c _ { 5 } = 1
C) y^=[c100c40]\hat { \mathrm { y } } = \left[ \begin{array} { l } \mathrm { c } _ { 1 } \\ 0 \\ 0 \\ \mathrm { c } _ { 4 } \\ 0 \end{array} \right]
D) y^=[00010]\hat { y } = \left[ \begin{array} { l } 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions