Solved

Sketch the Graph of the Convex Hull of S A)


B)

C)


D)

Question 9

Multiple Choice

Sketch the graph of the convex hull of S.
- InR2, let S={[03]}{[x0]:0x4}\operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l}0 \\3\end{array}\right]\right\} \cup\left\{\left[\begin{array}{l}\mathrm{x} \\0\end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}
 Sketch the graph of the convex hull of S. - \operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l} 0 \\ 3 \end{array}\right]\right\} \cup\left\{\left[\begin{array}{l} \mathrm{x} \\ 0 \end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}     A)     B)    C)     D)


A)
 Sketch the graph of the convex hull of S. - \operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l} 0 \\ 3 \end{array}\right]\right\} \cup\left\{\left[\begin{array}{l} \mathrm{x} \\ 0 \end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}     A)     B)    C)     D)

B)
 Sketch the graph of the convex hull of S. - \operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l} 0 \\ 3 \end{array}\right]\right\} \cup\left\{\left[\begin{array}{l} \mathrm{x} \\ 0 \end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}     A)     B)    C)     D)
C)
 Sketch the graph of the convex hull of S. - \operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l} 0 \\ 3 \end{array}\right]\right\} \cup\left\{\left[\begin{array}{l} \mathrm{x} \\ 0 \end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}     A)     B)    C)     D)

D)
 Sketch the graph of the convex hull of S. - \operatorname{In} \mathfrak{R}^{2}, \text { let } \mathrm{S}=\left\{\left[\begin{array}{l} 0 \\ 3 \end{array}\right]\right\} \cup\left\{\left[\begin{array}{l} \mathrm{x} \\ 0 \end{array}\right]: 0 \leq \mathrm{x} \leq 4\right\}     A)     B)    C)     D)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions