Solved

Provide an Appropriate Response
- And 2v1+v22v3v4=02 \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 } - 2 \mathbf { v } _ { 3 } - \mathbf { v } _ { 4 } = \mathbf { 0 }

Question 39

Multiple Choice

Provide an appropriate response
- p=12v1+18v2+18v3+14v4\mathbf { p } = \frac { 1 } { 2 } \mathbf { v } _ { 1 } + \frac { 1 } { 8 } \mathbf { v } _ { 2 } + \frac { 1 } { 8 } \mathbf { v } _ { 3 } + \frac { 1 } { 4 } \mathbf { v } _ { 4 } and 2v1+v22v3v4=02 \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 } - 2 \mathbf { v } _ { 3 } - \mathbf { v } _ { 4 } = \mathbf { 0 }
Use the procedure in the proof of Caratheodory's Theorem to express p\mathbf { p } as a convex combination of three of the vi\mathbf { v } _ { \mathbf { i } } 's.


A) p=58v1+316v2+316v4p = \frac { 5 } { 8 } \mathbf { v } _ { 1 } + \frac { 3 } { 16 } \mathbf { v } _ { 2 } + \frac { 3 } { 16 } \mathbf { v } _ { 4 }
B) p=14v1+38v2+38v4\mathbf { p } = \frac { 1 } { 4 } \mathbf { v } _ { 1 } + \frac { 3 } { 8 } \mathbf { v } _ { 2 } + \frac { 3 } { 8 } \mathbf { v } _ { 4 }
C) p=18v2+38v3+12v4\mathrm { p } = \frac { 1 } { 8 } \mathbf { v } _ { 2 } + \frac { 3 } { 8 } \mathbf { v } _ { 3 } + \frac { 1 } { 2 } \mathbf { v } _ { 4 }
D) It cannot be done using only 3vi3 \mathbf { v } _ { \mathbf { i } } 's.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions