Solved

Make a Change of Variable, X = Py, That Transforms Q(x)=5x12+8x22+4x1x2Q ( x ) = 5 x _ { 1 } ^ { 2 } + 8 x _ { 2 } ^ { 2 } + 4 x _ { 1 } x _ { 2 }

Question 20

Multiple Choice

Make a change of variable, x = Py, that transforms the given quadratic form into a quadratic form with no cross-product
term. Give P and the new quadratic form.
- Q(x) =5x12+8x22+4x1x2Q ( x ) = 5 x _ { 1 } ^ { 2 } + 8 x _ { 2 } ^ { 2 } + 4 x _ { 1 } x _ { 2 }


A)
P=[1221];9y1+4y2\mathrm { P } = \left[ \begin{array} { r r } 1 & - 2 \\2 & 1\end{array} \right] ; 9 \mathrm { y } _ { 1 } + 4 \mathrm { y } _ { 2 }
B)
P=[1/52/52/51/5];9y12+4y22\mathrm { P } = \left[ \begin{array} { c c } 1 / \sqrt { 5 } & - 2 / \sqrt { 5 } \\2 / \sqrt { 5 } & 1 / \sqrt { 5 }\end{array} \right] ; 9 \mathrm { y } _ { 1 } ^ { 2 } + 4 \mathrm { y } _ { 2 } ^ { 2 }
C)
P=[1221];9y12+4y22P = \left[ \begin{array} { r r } 1 & - 2 \\2 & 1\end{array} \right] ; 9 y _ { 1 } ^ { 2 } + 4 y _ { 2 } ^ { 2 }

D)

P=[1/52/52/51/5];9y124y22P = \left[ \begin{array} { r r } - 1 / \sqrt { 5 } & - 2 / \sqrt { 5 } \\2 / \sqrt { 5 } & 1 / \sqrt { 5 }\end{array} \right] ; - 9 y _ { 1 } ^ { 2 } - 4 y _ { 2 } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions