Solved

Find the Maximum Value Of Q(x)Q ( x ) Subject to the Constraints

Question 3

Multiple Choice

Find the maximum value of Q(x) Q ( x ) subject to the constraints xTx=1_x T _ { x } = 1 and xTu=0_x { T } \mathbf { _u } = 0 , where uu is a unit eigenvector corresponding to the greatest eigenvalue of the matrix of the quadratic form.
- Q(x) =14x12+14x22+18x32+26x1x2+18x1x3+18x2x3Q ( x ) = 14 x _ { 1 } ^ { 2 } + 14 x _ { 2 } ^ { 2 } + 18 x _ { 3 } ^ { 2 } + 26 x _ { 1 } x _ { 2 } + 18 x _ { 1 } x _ { 3 } + 18 x _ { 2 } x _ { 3 }


A) 36
B) 9
C) 1
D) 16

Correct Answer:

verifed

Verified

Related Questions