Solved

Let W Be the Subspace Spanned by the Uʹs A) y=[18710]+[141]\mathbf { y } = \left[ \begin{array} { r } 18 \\7 \\10\end{array} \right] + \left[ \begin{array} { r } - 1 \\4 \\- 1\end{array} \right]

Question 26

Multiple Choice

Let W be the subspace spanned by the uʹs. Write y as the sum of a vector in W and a vector orthogonal to W.
- y=[19311],u1=[101],u2=[212]\mathbf { y } = \left[ \begin{array} { r } 19 \\3 \\11\end{array} \right] , \mathbf { u } _ { 1 } = \left[ \begin{array} { r } 1 \\0 \\- 1\end{array} \right] , \mathbf { u } _ { 2 } = \left[ \begin{array} { l } 2 \\1 \\2\end{array} \right]


A)
y=[18710]+[141]\mathbf { y } = \left[ \begin{array} { r } 18 \\7 \\10\end{array} \right] + \left[ \begin{array} { r } - 1 \\4 \\- 1\end{array} \right]
B)
y=[13013]+[636]\mathbf { y } = \left[ \begin{array} { r } 13 \\ 0 \\ - 13 \end{array} \right] + \left[ \begin{array} { l } 6 \\ 3 \\ 6 \end{array} \right]

C)
y=[18710]+[141]\mathbf { y } = \left[ \begin{array} { r } 18 \\ 7 \\ 10 \end{array} \right] + \left[ \begin{array} { r } 1 \\ - 4 \\ 1 \end{array} \right]

D)


y=[18710]+[371021]\mathbf { y } = \left[ \begin{array} { r } 18 \\ 7 \\ 10 \end{array} \right] + \left[ \begin{array} { l } 37 \\ 10 \\ 21 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions