Solved

Solve the Problem C[0,π]C [ 0 , \pi ] Have the Inner Product

Question 35

Multiple Choice

Solve the problem.
-Let C[0,π]C [ 0 , \pi ] have the inner product f,g=0πf(t) g(t) dt\langle f , g \rangle = \int _ { 0 } ^ { \pi } f ( t ) g ( t ) d t , and let mm and nn be unequal positive integers. Prove that cos(mt) \cos ( \mathrm { mt } ) and cos(nt) \cos ( \mathrm { nt } ) are orthogonal.


A) cos(mt) ,cos(nt) =0πcos(mt) cos(nt) dt\langle \cos ( m t ) , \cos ( n t ) \rangle = \int _ { 0 } ^ { \pi } \cos ( m t ) \cos ( n t ) d t
=120π[cos(mt+nt) +cos(mtnt) ]dt=12[sin(mt+nt) mn+sin(mtnt) m+n] from [0,π]=1.\begin{array} { l } = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } [ \cos ( m t + n t ) + \cos ( m t - n t ) ] d t \\= \frac { 1 } { 2 } \left[ \frac { \sin ( m t + n t ) } { m - n } + \frac { \sin ( m t - n t ) } { m + n } \right] \text { from } [ 0 , \pi ] \\= 1 .\end{array}
B)  cos(mt) ,cos(nt) =0πcos(mt) cos(nt) dt=0π[cos(mt+nt) +cos(mtnt) ]dt=[sin(mtnt) m+n+sin(mt+nt) mn] from [0,π]=1.\text { } \begin{aligned}\langle \cos ( m t ) , \cos ( n t ) \rangle & = \int _ { 0 } ^ { \pi } \cos ( m t ) \cos ( n t ) d t \\& = \int _ { 0 } ^ { \pi } [ \cos ( m t + n t ) + \cos ( m t - n t ) ] d t \\& = \left[ \frac { \sin ( m t - n t ) } { m + n } + \frac { \sin ( m t + n t ) } { m - n } \right] \text { from } [ 0 , \pi ] \\& = 1 .\end{aligned}
C)  cos(mt) ,cos(nt) =0πcos(mt) cos(nt) dt=120π[cos(mt+nt) +cos(mtnt) ]dt=12[sin(mt+nt) m+n+sin(mtnt) mn] from [0,π]=0.\text { } \begin{aligned}\langle \cos ( m t ) , \cos ( n t ) \rangle & = \int _ { 0 } ^ { \pi } \cos ( m t ) \cos ( n t ) d t \\& = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } [ \cos ( m t + n t ) + \cos ( m t - n t ) ] d t \\& = \frac { 1 } { 2 } \left[ \frac { \sin ( m t + n t ) } { m + n } + \frac { \sin ( m t - n t ) } { m - n } \right] \text { from } [ 0 , \pi ] \\& = 0 .\end{aligned}
D) cos(mt) ,cos(nt) =0πcos(mt) cos(nt) dt=120π[cos(mt+nt) cos(mtnt) ]dt=12[sin(mt+nt) mnsin(mtnt) m+n] from [0,π]\text {} \begin{aligned}\langle \cos ( m t ) , \cos ( n t ) \rangle & = \int _ { 0 } ^ { \pi } \cos ( m t ) \cos ( n t ) d t \\& = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } [ \cos ( m t + n t ) - \cos ( m t - n t ) ] d t \\& = \frac { 1 } { 2 } \left[ \frac { \sin ( m t + n t ) } { m - n } - \frac { \sin ( m t - n t ) } { m + n } \right] \text { from } [ 0 , \pi ]\end{aligned}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions