Solved

Solve the Problem f(t)=3tf ( t ) = 3 t On the Interval

Question 12

Multiple Choice

Solve the problem.
-Find the nth-order Fourier approximation to the function f(t) =3tf ( t ) = 3 t on the interval [0,2π][ 0,2 \pi ] .


A) πcos(t) cos(2t) cos(3t) 6ncos(nt) \pi - \cos ( t ) - \cos ( 2 t ) - \cos ( 3 t ) - \ldots - \frac { 6 } { n } \cos ( n t )
B) 3π6cos(t) 3sin(2t) 2cos(3t) 6ncos(nt) 3 \pi - 6 \cos ( t ) - 3 \sin ( 2 t ) - 2 \cos ( 3 t ) - \ldots - \frac { 6 } { n } \cos ( n t )
C) 3π6sin(t) 3sin(2t) 2sin(3t) 6nsin(nt) 3 \pi - 6 \sin ( t ) - 3 \sin ( 2 t ) - 2 \sin ( 3 t ) - \ldots - \frac { 6 } { n } \sin ( n t )
D) 3π6sin(t) 3sin(2t) 1sin(3t) 3nsin(nt) 3 \pi - 6 \sin ( t ) - 3 \sin ( 2 t ) - 1 \sin ( 3 t ) - \ldots - \frac { 3 } { n } \sin ( n t )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions