Solved

Determine Whether {V1, V2, V3} Is a Basis for R3

Question 4

Multiple Choice

Determine whether {v1, v2, v3} is a basis for R3
-Let A=[137201271324951361191]\mathrm { A } = \left[ \begin{array} { r r r r r } - 1 & 3 & 7 & 2 & 0 \\ 1 & - 2 & - 7 & - 1 & 3 \\ 2 & - 4 & - 9 & - 5 & 1 \\ 3 & - 6 & - 11 & - 9 & - 1 \end{array} \right] and B=[13720010130053500000]B = \left[ \begin{array} { r r r r r } 1 & - 3 & - 7 & - 2 & 0 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 5 & - 3 & - 5 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]
It can be shown that matrix A\mathrm { A } is row equivalent to matrix B\mathrm { B } . Find a basis for ColA\mathrm { Col } \mathrm {} \mathrm { A } .


A)
[1000],[3100],[7050]\left[ \begin{array} { l } 1 \\ 0 \\ 0 \\ 0 \end{array} \right] , \left[ \begin{array} { c } - 3 \\ 1 \\ 0 \\ 0 \end{array} \right] , \left[ \begin{array} { c } - 7 \\ 0 \\ 5 \\ 0 \end{array} \right]

B)
[1123],[3246],[77911]\left[\begin{array}{r}-1 \\1 \\2 \\3\end{array}\right],\left[\begin{array}{r}3 \\-2 \\-4 \\-6\end{array}\right],\left[\begin{array}{c}7 \\-7 \\-9 \\-11\end{array}\right]



C)
[1123],[3246],[2159]\left[ \begin{array} { r } - 1 \\ 1 \\ 2 \\ 3 \end{array} \right] , \left[ \begin{array} { r } 3 \\ - 2 \\ - 4 \\ - 6 \end{array} \right] , \left[ \begin{array} { r } 2 \\ - 1 \\ - 5 \\ - 9 \end{array} \right]

D)
[1123],[3246],[77911],[2159],[0311]\left[\begin{array}{r}-1 \\1 \\2 \\3\end{array}\right],\left[\begin{array}{r}3 \\-2 \\-4 \\-6\end{array}\right],\left[\begin{array}{r}7 \\-7 \\-9 \\-11\end{array}\right],\left[\begin{array}{r}2 \\-1 \\-5 \\-9\end{array}\right],\left[\begin{array}{r}0 \\3 \\1 \\-1\end{array}\right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions