Solved

Find a Basis for the Column Space of the Matrix B=[10503014040001100000]B = \left[ \begin{array} { r r r r r } 1 & 0 & - 5 & 0 & - 3 \\0 & 1 & 4 & 0 & 4 \\0 & 0 & 0 & 1 & 1 \\0 & 0 & 0 & 0 & 0\end{array} \right]

Question 81

Multiple Choice

Find a basis for the column space of the matrix.
- B=[10503014040001100000]B = \left[ \begin{array} { r r r r r } 1 & 0 & - 5 & 0 & - 3 \\0 & 1 & 4 & 0 & 4 \\0 & 0 & 0 & 1 & 1 \\0 & 0 & 0 & 0 & 0\end{array} \right]


A) {[1000],[0100],[5400]}\left\{ \left[ \begin{array} { l } 1 \\ 0 \\ 0 \\ 0 \end{array} \right] , \left[ \begin{array} { l } 0 \\ 1 \\ 0 \\ 0 \end{array} \right] , \left[ \begin{array} { r } - 5 \\ 4 \\ 0 \\ 0 \end{array} \right] \right\}
B)
{[1000],[0100],[0010]}\left\{ \left[ \begin{array} { l } 1 \\0 \\0 \\0\end{array} \right] , \left[ \begin{array} { l } 0 \\1 \\0 \\0\end{array} \right] , \left[ \begin{array} { l } 0 \\0 \\1 \\0\end{array} \right] \right\}
C)
{[54100],[34011]}\left\{ \left[ \begin{array} { r } 5 \\- 4 \\1 \\0 \\0\end{array} \right] , \left[ \begin{array} { r } 3 \\- 4 \\0 \\- 1 \\1\end{array} \right] \right\}
D)
{[1000],[0100]}\left\{ \left[ \begin{array} { l } 1 \\0 \\0 \\0\end{array} \right] , \left[ \begin{array} { l } 0 \\1 \\0 \\0\end{array} \right] \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions