Solved

Solve the Problem , And b=[112]\mathbf { b } = \left[ \begin{array} { r } - 1 \\ 1 \\ 2 \end{array} \right]

Question 40

Multiple Choice

Solve the problem.
-Let a1=[123],a2=[341],a3=[216]\mathbf { a } _ { \mathbf { 1 } } = \left[ \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right] , \mathbf { a } _ { \mathbf { 2 } } = \left[ \begin{array} { r } - 3 \\ - 4 \\ 1 \end{array} \right] , \mathbf { a } _ { 3 } = \left[ \begin{array} { l } 2 \\ 1 \\ 6 \end{array} \right] , and b=[112]\mathbf { b } = \left[ \begin{array} { r } - 1 \\ 1 \\ 2 \end{array} \right] .
Determine whether b\mathbf { b } can be written as a linear combination of a1,a2\mathbf { a } _ { \mathbf { 1 } } , \mathbf { a } _ { \mathbf { 2 } } , and a3\mathbf { a } _ { 3 } . In other words, determine whether weights x1,x2x _ { 1 } , x _ { 2 } , and x3x _ { 3 } exist, such that x1a1+x2a2+x3a3=bx _ { 1 } a _ { 1 } + x _ { 2 } a _ { 2 } + x _ { 3 } a _ { 3 } = b . Determine the weights x1,x2x _ { 1 } , x _ { 2 } , and x3x _ { 3 } if possible.


A) x1=2,x2=1,x3=0x _ { 1 } = 2 , x _ { 2 } = 1 , x _ { 3 } = 0
B) x1=3,x2=0,x3=1x _ { 1 } = - 3 , x _ { 2 } = 0 , x _ { 3 } = 1
C) No solution
D) x1=2,x2=1,x3=1x _ { 1 } = - 2 , x _ { 2 } = - 1 , x _ { 3 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions