Solved

Use the Formulas k=1nk=n(n+1)2\sum_{k=1}^{n} k=\frac{n(n+1)}{2} And k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} To Find the Sum in Terms
Of

Question 50

Short Answer

Use the formulas k=1nk=n(n+1)2\sum_{k=1}^{n} k=\frac{n(n+1)}{2} and
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} to find the sum in terms
of  n. k=1n(3k25k+7)\text { n. } \sum_{k=1}^{n}\left(3 k^{2}-5 k+7\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions