Solved

The Following MINITAB Output Display Presents the Results of a Hypothesis

Question 29

True/False

The following MINITAB output display presents the results of a hypothesis test for the difference μ1μ2\mu _ { 1 } - \mu _ { 2 } between two population means.
 Two-sample T for X1 vs X2 N Mean  StDev  SE Mean  A 7112.41523.4858.876 B 8122.78823.2228.210\begin{array}{l}\text { Two-sample T for X1 vs X2 }\\\begin{array}{rrrrc} & \mathrm{N} & \text { Mean } & \text { StDev } & \text { SE Mean } \\\text { A } & 7 & 112.415 & 23.485 & 8.876 \\\text { B } & 8 & 122.788 & 23.222 & 8.210\end{array}\end{array}

Difference =mu(X1)mu(X2)= \operatorname { mu } ( \mathrm { X } 1 ) - \mathrm { mu } ( \mathrm { X } 2 )
Estimate for difference: 10.373- 10.373
95%95 \% CI for difference: (34.072,13.326)( - 34.072,13.326 )
T-Test of difference =0(= 0 ( vs not =):= ) : T-Value =0.857889= - 0.857889
P\mathrm { P } -Value =0.406493DF=13= 0.406493 \quad \mathrm { DF } = 13
Can you reject H0H _ { 0 } rejected at the α=0.10\alpha = 0.10 level?

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions