Solved

Determine Whether the Function Is One-To-One f={(0,0),(1,5),(2,10)}f = \{ ( 0,0 ) , ( 1,5 ) , ( - 2,10 ) \}

Question 75

Multiple Choice

Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines
the inverse function of the given function.
- f={(0,0) ,(1,5) ,(2,10) }f = \{ ( 0,0 ) , ( 1,5 ) , ( - 2,10 ) \}


A) one-to-one; f1={(0,0) ,(5,2) ,(10,1) }\mathrm { f } ^ { - 1 } = \{ ( 0,0 ) , ( 5 , - 2 ) , ( 10,1 ) \}
B) one-to-one; f1={(0,0) ,(1,15) ,(2,110) }\mathrm { f } ^ { - 1 } = \left\{ ( 0,0 ) , \left( 1 , \frac { 1 } { 5 } \right) , \left( - 2 , \frac { 1 } { 10 } \right) \right\}
C) one-to-one; f1={(0,0) ,(5,1) ,(10,2) }\mathrm { f } ^ { - 1 } = \{ ( 0,0 ) , ( 5,1 ) , ( 10 , - 2 ) \}
D) not one-to-one

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions