Solved

Determine Whether the Function Is One-To-One A)
B)
C)  not one-to-one \text { not one-to-one }

Question 250

Multiple Choice

Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines
the inverse function of the given function.
-  Word (input)   table  window  chair  door  couch  Second Letter (output)  aihoo\begin{array}{l|c|c|c|c|c}\text { Word (input) } & \text { table } & \text { window } & \text { chair } & \text { door } & \text { couch } \\\hline \text { Second Letter (output) } & \mathrm{a} & \mathrm{i} & \mathrm{h} & \mathrm{o} & \mathrm{o}\end{array}


A)  Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines the inverse function of the given function. - \begin{array}{l|c|c|c|c|c} \text { Word (input)  } & \text { table } & \text { window } & \text { chair } & \text { door } & \text { couch } \\ \hline \text { Second Letter (output)  } & \mathrm{a} & \mathrm{i} & \mathrm{h} & \mathrm{o} & \mathrm{o} \end{array}   A)   B)   C)  \text { not one-to-one }  D)
B)  Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines the inverse function of the given function. - \begin{array}{l|c|c|c|c|c} \text { Word (input)  } & \text { table } & \text { window } & \text { chair } & \text { door } & \text { couch } \\ \hline \text { Second Letter (output)  } & \mathrm{a} & \mathrm{i} & \mathrm{h} & \mathrm{o} & \mathrm{o} \end{array}   A)   B)   C)  \text { not one-to-one }  D)
C)  not one-to-one \text { not one-to-one }
D)  Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines the inverse function of the given function. - \begin{array}{l|c|c|c|c|c} \text { Word (input)  } & \text { table } & \text { window } & \text { chair } & \text { door } & \text { couch } \\ \hline \text { Second Letter (output)  } & \mathrm{a} & \mathrm{i} & \mathrm{h} & \mathrm{o} & \mathrm{o} \end{array}   A)   B)   C)  \text { not one-to-one }  D)


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions