Solved

Solve the Inequality 5k25| 5 k - 2 | \geq 5

Question 142

Multiple Choice

Solve the inequality. Then graph the solution set and write it in interval notation.
- 5k25| 5 k - 2 | \geq 5
 Solve the inequality. Then graph the solution set and write it in interval notation. - | 5 k - 2 | \geq 5     A)   \left[ \frac { 7 } { 5 } , \infty \right)      B)   \left[ - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right]     C)   \left( - \infty , - \frac { 3 } { 5 } \right] \cup \left[ \frac { 7 } { 5 } , \infty \right)      D)   \left( - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right)


A) [75,) \left[ \frac { 7 } { 5 } , \infty \right)
 Solve the inequality. Then graph the solution set and write it in interval notation. - | 5 k - 2 | \geq 5     A)   \left[ \frac { 7 } { 5 } , \infty \right)      B)   \left[ - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right]     C)   \left( - \infty , - \frac { 3 } { 5 } \right] \cup \left[ \frac { 7 } { 5 } , \infty \right)      D)   \left( - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right)

B) [35,75]\left[ - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right]
 Solve the inequality. Then graph the solution set and write it in interval notation. - | 5 k - 2 | \geq 5     A)   \left[ \frac { 7 } { 5 } , \infty \right)      B)   \left[ - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right]     C)   \left( - \infty , - \frac { 3 } { 5 } \right] \cup \left[ \frac { 7 } { 5 } , \infty \right)      D)   \left( - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right)

C) (,35][75,) \left( - \infty , - \frac { 3 } { 5 } \right] \cup \left[ \frac { 7 } { 5 } , \infty \right)
 Solve the inequality. Then graph the solution set and write it in interval notation. - | 5 k - 2 | \geq 5     A)   \left[ \frac { 7 } { 5 } , \infty \right)      B)   \left[ - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right]     C)   \left( - \infty , - \frac { 3 } { 5 } \right] \cup \left[ \frac { 7 } { 5 } , \infty \right)      D)   \left( - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right)

D) (35,75) \left( - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right)
 Solve the inequality. Then graph the solution set and write it in interval notation. - | 5 k - 2 | \geq 5     A)   \left[ \frac { 7 } { 5 } , \infty \right)      B)   \left[ - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right]     C)   \left( - \infty , - \frac { 3 } { 5 } \right] \cup \left[ \frac { 7 } { 5 } , \infty \right)      D)   \left( - \frac { 3 } { 5 } , \frac { 7 } { 5 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions