Solved

Solve the Problem χ2\chi ^ { 2 } Values Can Be Approximated as Follows

Question 21

Multiple Choice

Solve the problem. For large numbers of degrees of freedom, the critical χ2\chi ^ { 2 } values can be approximated as follows: χ2=12(z+2k1) 2,\chi ^ { 2 } = \frac { 1 } { 2 } ( z + \sqrt { 2 k - 1 } ) ^ { 2 } , where k is the number of degrees of freedom and z is the critical value. To find the lower critical value, the negative z-value is used, to find the upper critical value, the positive z-value is used. Use this approximation to estimate the critical value of χ2\chi ^ { 2 } in a two-tailed hypothesis test with n=104 and α=0.10\alpha = 0.10


A) χ284.992 and χ2121.646\chi ^ { 2 } \approx 84.992 \text { and } \chi ^ { 2 } \approx 121.646
B) χ281.186 and χ2128.520\chi ^ { 2 } \approx 81.186 \text { and } \chi ^ { 2 } \approx 128.520
C) χ280.300 and χ2127.406\chi ^ { 2 } \approx 80.300 \text { and } \chi ^ { 2 } \approx 127.406
D) χ285.903 and χ2122.735\chi ^ { 2 } \approx 85.903 \text { and } \chi ^ { 2 } \approx 122.735

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions