Solved

In the Multiple Regression Model with Two Explanatory Variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i }

Question 46

Essay

In the multiple regression model with two explanatory variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i } the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ):
β^0=Yˉβ^1Xˉ1β^2Xˉ2β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2β^2=i=1nyix2ii=1nx1i2i=1nyix1ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\begin{array} { c } \hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } \\\\\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } \\\\\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } }\end{array}
You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate (X1i)\left( X _ { 1 i } \right) and the saving rate (X2i)\left( X _ { 2 i } \right) (average investment share of GDP from 1980 to 1990 ) on GDP per worker (relative to the U.S.)in 1990.The various sums needed to calculate the OLS estimates are given
below: i=1nYi=33.33;i=1nX1i=2.025;i=1nX2i=17.313i=1nyi2=8.3103;i=1nx1i2=.0122;i=1nx2i2=0.6422i=1nyix1i=0.2304;i=1nyix2i=1.5676;i=1nx1ix2i=0.0520\begin{array} { c } \sum _ { i = 1 } ^ { n } Y _ { i } = 33.33 ; \sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025 ; \sum _ { i = 1 } ^ { n } X _ { 2 i } = 17.313 \\\\\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122 ; \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422 \\\\\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = - 0.2304 ; \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } = - 0.0520\end{array} The heteroskedasticity-robust standard errors of the two slope coefficients are 1.99 (for
population growth)and 0.23 (for the saving rate).Calculate the 95% confidence interval
for both coefficients.How many standard deviations are the coefficients away from zero?

Correct Answer:

verifed

Verified

The 95% confidence interval for the popu...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions