Solved

In the Multiple Regression Model with Two Explanatory Variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i }

Question 25

Essay

In the multiple regression model with two explanatory variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i } the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ):
β^0=Yˉβ^1Xˉ1β^2Xˉ2β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2β^2=i=1nyix2ii=1nx1i2i=1nyix1ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\begin{array} { c } \hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } \\\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } \\\\\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } }\end{array} You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate (X1i)\left( X _ { 1 i } \right) and the saving rate (X2i)\left( X _ { 2 i } \right) (average investment share of GDP from 1980 to 1990) on GDP per worker (relative to the U.S.) in 1990. The various sums needed to calculate the OLS estimates are given below: i=1nYi=33.33;i=1nX1i=2.025;i=1nX2i=17.313i=1nyi2=8.3103;i=1nx1i2=.0122;i=1nx2i2=0.6422\begin{array} { l } \sum _ { i = 1 } ^ { n } Y _ { i } = 33.33 ; \sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025 ; \sum _ { i = 1 } ^ { n } X _ { 2 i } = 17.313 \\\\\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122 ; \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422\end{array} i=1nyix1i=0.2304;i=1nyix2i=1.5676;i=1nx1ix2i=0.0520\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = - 0.2304 ; \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } = - 0.0520 (a)What are your expected signs for the regression coefficient? Calculate the coefficients
and see if their signs correspond to your intuition.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions