Solved

The Probability Limit of the OLS Estimator in the Case β^1pβ1+ρXuσuσX\hat { \beta } _ { 1 } \stackrel { p } { \rightarrow } \beta _ { 1 } + \rho _ { X u } \frac { \sigma _ { u } } { \sigma _ { X } }

Question 40

Essay

The probability limit of the OLS estimator in the case of omitted variables is given in
your text by the following formula: β^1pβ1+ρXuσuσX\hat { \beta } _ { 1 } \stackrel { p } { \rightarrow } \beta _ { 1 } + \rho _ { X u } \frac { \sigma _ { u } } { \sigma _ { X } } Give an intuitive explanation for two conditions under which the bias will be small.

Correct Answer:

verifed

Verified

The bias will be small if there is littl...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions