Solved

(Requires Some Calculus) Consider the Sample Regression Function Yi=β0^+β^1X1i+β^2X2iY _ { i } = \widehat { \beta _ { 0 } } + \widehat { \beta } _ { 1 } X _ { 1 i } + \widehat { \beta } _ { 2 } X _ { 2 i }

Question 52

Essay

(Requires some Calculus) Consider the sample regression function Yi=β0^+β^1X1i+β^2X2iY _ { i } = \widehat { \beta _ { 0 } } + \widehat { \beta } _ { 1 } X _ { 1 i } + \widehat { \beta } _ { 2 } X _ { 2 i } Take the total derivative. Next show that the partial derivative ΔYiΔX1i\frac { \Delta Y _ { i } } { \Delta X _ { 1 i } } is obtained by holding X2iX _ { 2 i } constant, or controlling for X2iX _ { 2 i }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions