Solved

(Requires Appendix Material) Consider the Following Population Regression Function Model Y^i=β^0+β^1X1i+β^2X2i\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { 1 i } + \widehat { \beta } _ { 2 } X _ { 2 i }

Question 19

Essay

(Requires Appendix material) Consider the following population regression function model with two explanatory variables: Y^i=β^0+β^1X1i+β^2X2i\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { 1 i } + \widehat { \beta } _ { 2 } X _ { 2 i }
It is easy but tedious to
show that SE(β2^)\operatorname { SE } \left( \widehat { \beta _ { 2 } } \right) is given by the following formula: σβ1^2=1n[11ρx1,x22]σu2σX12\sigma _ { \widehat { \beta _ { 1 } } } ^ { 2 } = \frac { 1 } { n } \left[ \frac { 1 } { 1 - \rho _ { x _ { 1 } , x _ { 2 } } ^ { 2 } } \right] \frac { \sigma _ { u } ^ { 2 } } { \sigma _ { X _ { 1 } } ^ { 2 } } Sketch how
SE(β2^)\operatorname { SE } \left( \widehat { \beta _ { 2 } } \right) increases with the correlation between X1i and X2iX _ { 1 i } \text { and } X _ { 2 i } \text {. }

Correct Answer:

verifed

Verified

The answer...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions