Solved

Minimization Of i=1n(Yib0b1X1ibkXki)2\sum _ { i = 1 } ^ { n } \left( Y _ { i } - b _ { 0 } - b _ { 1 } X _ { 1 i } - \cdots - b _ { k } X _ { k i } \right) ^ { 2 }

Question 24

Multiple Choice

Minimization of i=1n(Yib0b1X1ibkXki) 2\sum _ { i = 1 } ^ { n } \left( Y _ { i } - b _ { 0 } - b _ { 1 } X _ { 1 i } - \cdots - b _ { k } X _ { k i } \right) ^ { 2 } results in


A) XY=Xβ^X ^ { \prime } \boldsymbol { Y } = \boldsymbol { X } \hat { \boldsymbol { \beta } }
B) Xβ^=0k+1\boldsymbol { X } \hat { \boldsymbol { \beta } } = \mathbf { 0 } _ { k + 1 }
C) X(YXβ^) =0k+1\boldsymbol { X } ^ { \prime } ( \boldsymbol { Y } - \boldsymbol { X } \hat { \boldsymbol { \beta } } ) = \mathbf { 0 } _ { k + 1 }
D) Rβ=r\boldsymbol { R } \boldsymbol { \beta } = \boldsymbol { r } \text {. }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions