Solved

Consider the Simple Regression Model Yi=β0+β1Xi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + u _ { i }

Question 32

Essay

Consider the simple regression model Yi=β0+β1Xi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + u _ { i } where Xi>0X _ { \mathrm { i } } > 0 for all ii , and the conditional variance is var(uiXi)=θXi2\operatorname { var } \left( u _ { i } \mid X _ { i } \right) = \theta X _ { i } ^ { 2 } where θ\theta is a known constant with θ>0\theta > 0 . (a) Write the weighted regression as Y~i=β0X~0i+β1X~1i+u~i\tilde { Y } _ { i } = \beta _ { 0 } \tilde { X } _ { 0 i } + \beta _ { 1 } \tilde { X } _ { 1 i } + \tilde { u } _ { i } . How would you construct Y~i\tilde { Y } _ { i } , X~0i\tilde { X } _ { 0 i } and X~1i?\tilde { X } _ { 1 i } ?

Correct Answer:

verifed

Verified

The modified model is simply u...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions