Solved

Using the ADL (1,1) Regression Yt=β0+β1Yt1+γ1Xt1+utY _ { t } = \beta _ { 0 } + \beta _ { 1 } Y _ { t - 1 } + \gamma _ { 1 } X _ { t - 1 } + u _ { t }

Question 6

Multiple Choice

Using the ADL (1,1) regression Yt=β0+β1Yt1+γ1Xt1+utY _ { t } = \beta _ { 0 } + \beta _ { 1 } Y _ { t - 1 } + \gamma _ { 1 } X _ { t - 1 } + u _ { t }
the ARCH model for the regression error assumes that ut is normally distributed with mean zero and variance σt2\sigma _ { t } ^ { 2 } where


A) σt2=α0+α1ut12+α2ut22++αputp2\sigma _ { t } ^ { 2 } = \alpha _ { 0 } + \alpha _ { 1 } u _ { t - 1 } ^ { 2 } + \alpha _ { 2 } u _ { t - 2 } ^ { 2 } + \ldots + \alpha _ { p } u _ { t - p } ^ { 2 }
B) σt2=ut12++utp2+ϕ1σt12++ϕqσtq2\sigma _ { t } ^ { 2 } = u _ { t - 1 } ^ { 2 } + \ldots + u _ { t - p } ^ { 2 } + \phi _ { 1 } \sigma _ { t - 1 } ^ { 2 } + \ldots + \phi _ { q } \sigma _ { t - q } ^ { 2 }
C) σt2=ϕ1σt12++ϕqσtq2\sigma _ { t } ^ { 2 } = \phi _ { 1 } \sigma _ { t - 1 } ^ { 2 } + \ldots + \phi _ { q } \sigma _ { t - q } ^ { 2 }
D) σt2=α0+α1ut12++αputp2+ϕ1σt12++ϕqσtq2\sigma _ { t } ^ { 2 } = \alpha _ { 0 } + \alpha _ { 1 } u _ { t - 1 } ^ { 2 } + \ldots + \alpha _ { p } u _ { t - p } ^ { 2 } + \phi _ { 1 } \sigma _ { t - 1 } ^ { 2 } + \ldots + \phi _ { q } \sigma _ { t - q } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions