Solved

If the Causal Effect Is Different for Different People, Then Yi=β0+β1Xi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + u _ { i }

Question 30

Short Answer

If the causal effect is different for different people, then the population regression equation for a binary treatment variable Xi, can be written as a. Yi=β0+β1Xi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + u _ { i } .
b. Yi=β0+β1iXi+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 i } X _ { i } + u _ { i } .
c. Yi=β0i+β1iXi+uiY _ { i } = \beta _ { 0 i } + \beta _ { 1 i } X _ { i } + u _ { i } .
d. Yi=β0+β1Gi+β2Dt+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } G _ { i } + \beta _ { 2 } D _ { t } + u _ { i } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions