Solved

(Requires Matrix Algebra)Consider the Time and Entity Fixed Effect Model

Question 26

Essay

(Requires Matrix Algebra)Consider the time and entity fixed effect model with a single
explanatory variable Yit=β0+β1Xit+γ2D2i++γnDni+δ2B2t++δTBTt+uitY _ { i t } = \beta _ { 0 } + \beta _ { 1 } X _ { i t } + \gamma _ { 2 } D 2 _ { i } + \ldots + \gamma _ { n } D n _ { i } + \delta _ { 2 } B 2 _ { t } + \ldots + \delta _ { T } B T _ { t } + u _ { i t } For the case of n=4n = 4 and T=3T = 3 , write this model in the form Y=Xβ+U\boldsymbol { Y } = \boldsymbol { X } \boldsymbol { \beta } + \boldsymbol { U } , where, in general,
Y=(Y1Y2Yn),U=(u1u2un),X=(1X11Xk11X12Xk21X1nXkn)=(X1X2Xn), and β=(β0β1βk)\boldsymbol { Y } = \left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\\vdots \\Y _ { n }\end{array} \right) , \boldsymbol { U } = \left( \begin{array} { l } u _ { 1 } \\u _ { 2 } \\\vdots \\u _ { n }\end{array} \right) , \boldsymbol { X } = \left( \begin{array} { c c c c } 1 & X _ { 11 } & \cdots & X _ { k 1 } \\1 & X _ { 12 } & \cdots & X _ { k 2 } \\\vdots & \vdots & \ddots & \vdots \\1 & X _ { 1 n } & \cdots & X _ { k n }\end{array} \right) = \left( \begin{array} { l } \boldsymbol { X } _ { 1 } ^ { \prime } \\\boldsymbol { X } _ { 2 } ^ { \prime } \\\vdots \\\boldsymbol { X } _ { n } ^ { \prime }\end{array} \right) \text {, and } \boldsymbol { \beta } = \left( \begin{array} { l } \beta _ { 0 } \\\beta _ { 1 } \\\vdots \\\beta _ { k }\end{array} \right) How would the X\boldsymbol { X } matrix change if you added two binary variables, D1D 1 and B1B 1 ? Demonstrate that in this case the columns of the X\boldsymbol { X } matrix are not independent. Finally show that elimination of one of the two variables is not sufficient to get rid of the multicollinearity problem. In terms of the OLS estimator, β^=(XX)1XY\hat { \boldsymbol { \beta } } = \left( \boldsymbol { X } ^ { \prime } \boldsymbol { X } \right) ^ { - 1 } \boldsymbol { X } ^ { \prime } \boldsymbol { Y } , why does perfect multicollinearity create a problem?

Correct Answer:

verifed

Verified

Answer blured image Adding the t...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions