Solved

Use the Binomial Theorem to Prove the Following

Question 41

Short Answer

Use the binomial theorem to prove the following: (1000)+(1002)+(1004)+(1006)++(10098)+(100100)=(1001)+(1003)+(1005)++(10097)+(10099)\left( \begin{array} { c } 100 \\0\end{array} \right) + \left( \begin{array} { c } 100 \\2\end{array} \right) + \left( \begin{array} { c } 100 \\4\end{array} \right) + \left( \begin{array} { c } 100 \\6\end{array} \right) + \cdots + \left( \begin{array} { c } 100 \\98\end{array} \right) + \left( \begin{array} { c } 100 \\100\end{array} \right) = \left( \begin{array} { c } 100 \\1\end{array} \right) + \left( \begin{array} { c } 100 \\3\end{array} \right) + \left( \begin{array} { c } 100 \\5\end{array} \right) + \cdots + \left( \begin{array} { c } 100 \\97\end{array} \right) + \left( \begin{array} { c } 100 \\99\end{array} \right) \text {. }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions