Solved

Solve the Problem (n+1)!>3n( n + 1 ) ! > 3 ^ { n }

Question 12

Multiple Choice

Solve the problem.
-Suppose you wish to prove the statement that follows using the extended principle of mathematical is (n+1) !>3n( n + 1 ) ! > 3 ^ { n } , for positive integers n4n \geq 4 .

Assume that SkS _ { k } is true for k4k \geq 4 where SkS _ { k } is the statement (n+1) !>3n( n + 1 ) ! > 3 ^ { n } , and write the statement Sk+1S _ { k + 1 }


A) Sk+1:(k+2) !>3kS _ { k + 1 } : ( k + 2 ) ! > 3 ^ { k }
B) Sk+1:(k+1) !>4kS _ { k + 1 } : ( k + 1 ) ! > 4 ^ { k }
C) Sk+1:(k+1) !>3k+1S _ { k + 1 } : ( k + 1 ) ! > 3 ^ { k + 1 }
D) Sk+1:(k+2) !>3k+1S _ { k + 1 } : ( k + 2 ) ! > 3 ^ { k + 1 } ion.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions