Solved

Given an Ellipse with Major Axis of Length 2a and Minor

Question 72

Multiple Choice

Given an ellipse with major axis of length 2a and minor axis of length 2b, the area is given by A =ab.
The perimeter is approximated by Pπ2(a2+b2) P \approx \pi \sqrt { 2 \left( a ^ { 2 } + b ^ { 2 } \right) } a. Determine the area of the ellipse. b. Approximate the perimeter.
- x24+(y6) 212=1\frac { x ^ { 2 } } { 4 } + \frac { ( y - 6 ) ^ { 2 } } { 12 } = 1


A) a. A=48πA = 48 \pi square units
b. P4π2P \approx 4 \pi \sqrt { 2 } units
B) a. A=48πA = 48 \pi square units
b. P12πP \approx 12 \pi units
C) a. A=4π3A = 4 \pi \sqrt { 3 } square units
b. P4π2P \approx 4 \pi \sqrt { 2 } units
D) a. A=4π3A = 4 \pi \sqrt { 3 } square units
b. P12πP \approx 12 \pi units

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions