Solved

Solve the Problem \quad \quad  Regular\text { Regular} \quad

Question 67

Multiple Choice

Solve the problem.
-A gas station manager records the number of gallons of Regular, Plus, and Premium gasoline sold during the week (Monday-Friday) and on the weekends (Saturday-Sunday) in matrix A. The selling Price and profit for 1 gal of each type of gasoline is given in matrix B. \quad \quad  Regular\text { Regular}\quad  Plus\text { Plus}  Premium \text { Premium }
A=[4,2701,7608102,320610410] Weekdays  Weekend A=\left[\begin{array}{rrr}4,270 & 1,760 & 810 \\2,320 & 610 & 410\end{array}\right] \begin{array}{l}\text { Weekdays } \\\text { Weekend }\end{array}

 Selling B=[ Price  Profit $3.49$0.26$4.09$0.28$0.20] Regular  Plus  Premium \begin{array}{l}\text { Selling }\\B = \left[ \begin{array} { l l } \text { Price } & \text { Profit } \\\$ 3.49 & \$ 0.26 \\\$ 4.09 & \$ 0.28 \\\$ 0.20\end{array} \right] \text { Regular } \text { Plus } \text { Premium }\end{array}
a. Compute ABA B .
b. Determine the profit for the weekend.
c. Determine the revenue for the entire week.


A) a. AB=[$24,709.60$12,024.60$1,765.00$856.00]A B = \left[ \begin{array} { l r } \$ 24,709.60 & \$ 12,024.60 \\ \$ 1,765.00 & \$ 856.00 \end{array} \right]
b. $856.00\$ 856.00
c. $26,474.60\$ 26,474.60

B) a. AB=[$24,709.60$1,765.00$12,024.60$856.00]A B = \left[ \begin{array} { r r } \$ 24,709.60 & \$ 1,765.00 \\ \$ 12,024.60 & \$ 856.00 \end{array} \right]
b. $2,621.00\$ 2,621.00
c. $12,024.60\$ 12,024.60

C) a. AB=[$24,709.60$1,765.00$12,024.60$856.00]A B = \left[ \begin{array} { r r } \$ 24,709.60 & \$ 1,765.00 \\ \$ 12,024.60 & \$ 856.00 \end{array} \right]
b. $856.00\$ 856.00
c. $36,734.20\$ 36,734.20

D) a. AB=[$24,709.60$12,024.60$1,765.00$856.00]A B = \left[ \begin{array} { l r } \$ 24,709.60 & \$ 12,024.60 \\ \$ 1,765.00 & \$ 856.00 \end{array} \right]
b. $12,880.60\$ 12,880.60
c. $1,765.00\$ 1,765.00

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions