Solved

Determine the Inverse of the Given Matrix, If Possible A=[415112110]A = \left[ \begin{array} { r r r } 4 & - 1 & 5 \\1 & 1 & - 2 \\- 1 & 1 & 0\end{array} \right]

Question 20

Multiple Choice

Determine the inverse of the given matrix, if possible. Otherwise, state the matrix is singular.
- A=[415112110]A = \left[ \begin{array} { r r r } 4 & - 1 & 5 \\1 & 1 & - 2 \\- 1 & 1 & 0\end{array} \right]


A) A1=[1851631618516131618316516]A ^ { - 1 } = \left[ \begin{array} { c c c } \frac { 1 } { 8 } & \frac { 5 } { 16 } & - \frac { 3 } { 16 } \\ \frac { 1 } { 8 } & \frac { 5 } { 16 } & \frac { 13 } { 16 } \\ \frac { 1 } { 8 } & - \frac { 3 } { 16 } & - \frac { 5 } { 16 } \end{array} \right]
B) Singular matrix
C) A1=[1851631618516131618316516]A ^ { - 1 } = \left[ \begin{array} { c c c } - \frac { 1 } { 8 } & \frac { 5 } { 16 } & - \frac { 3 } { 16 } \\ - \frac { 1 } { 8 } & \frac { 5 } { 16 } & \frac { 13 } { 16 } \\ - \frac { 1 } { 8 } & - \frac { 3 } { 16 } & \frac { 5 } { 16 } \end{array} \right]
D) A1=[1851631618516131618316516]A ^ { - 1 } = \left[ \begin{array} { c c c } \frac { 1 } { 8 } & \frac { 5 } { 16 } & - \frac { 3 } { 16 } \\ \frac { 1 } { 8 } & \frac { 5 } { 16 } & \frac { 13 } { 16 } \\ \frac { 1 } { 8 } & - \frac { 3 } { 16 } & \frac { 5 } { 16 } \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions