Solved

Determine the Inverse of the Given Matrix, If Possible A=[5534012032130110]A=\left[\begin{array}{rrrr}-5 & 5 & 3 & -4 \\0 & 1 & -2 & 0 \\3 & 2 & 1 & 3 \\0 & 1 & 1 & 0\end{array}\right]

Question 37

Multiple Choice

Determine the inverse of the given matrix, if possible. Otherwise, state the matrix is singular.
- A=[5534012032130110]A=\left[\begin{array}{rrrr}-5 & 5 & 3 & -4 \\0 & 1 & -2 & 0 \\3 & 2 & 1 & 3 \\0 & 1 & 1 & 0\end{array}\right]


A) A1=[110943599013023013013111953649]A^{-1}=\left[\begin{array}{rrrr}-1 & -\frac{10}{9} & -\frac{4}{3} & -\frac{59}{9} \\0 & -\frac{1}{3} & 0 & -\frac{2}{3} \\0 & \frac{1}{3} & 0 & -\frac{1}{3} \\1 & \frac{11}{9} & \frac{5}{3} & \frac{64}{9}\end{array}\right]

B) A1=[110943599013023013013111953649]A^{-1}=\left[\begin{array}{rrrr}-1 & \frac{10}{9} & -\frac{4}{3} & \frac{59}{9} \\0 & \frac{1}{3} & 0 & \frac{2}{3} \\0 & -\frac{1}{3} & 0 & \frac{1}{3} \\1 & -\frac{11}{9} & \frac{5}{3} & -\frac{64}{9}\end{array}\right]

C)  Singular matrix \text { Singular matrix }

D) A1=[110943599013023013013111953649]A^{-1}=\left[\begin{array}{cccc}1 & \frac{10}{9} & \frac{4}{3} & \frac{59}{9} \\0 & \frac{1}{3} & 0 & \frac{2}{3} \\0 & -\frac{1}{3} & 0 & \frac{1}{3} \\-1 & -\frac{11}{9} & -\frac{5}{3} & -\frac{64}{9}\end{array}\right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions